City of San Diego Chollas Creek Water-Effect Ratio Study and Draft Results

Presentation to the Chollas Creek Stakeholders

6/21/10

Background

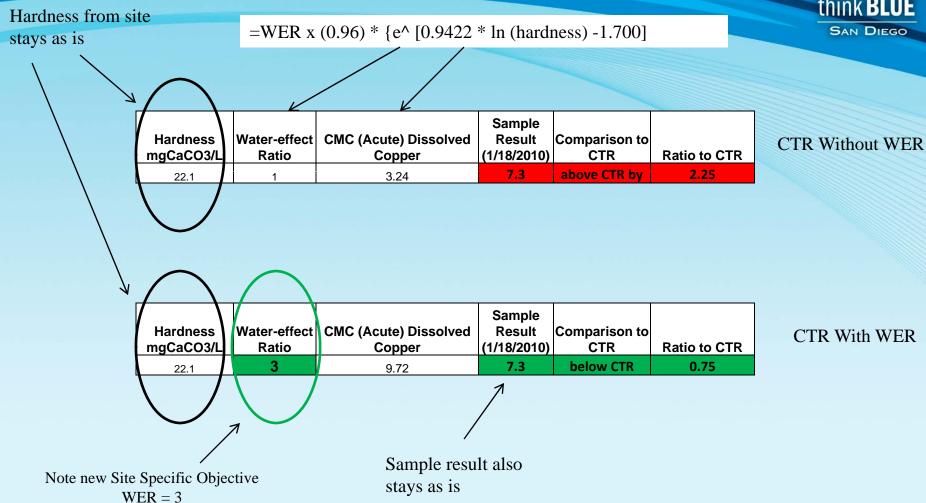
 The Chollas Creek Dissolved Copper, Lead, and Zinc TMDL is based on conservative baseline criteria.

 The study goal is to calculate a watereffect ratio (WER) and develop a sitespecific objective (SSO) for dissolved copper, lead, and zinc.

The Chollas Creek Dissolved Metals TMDL states:

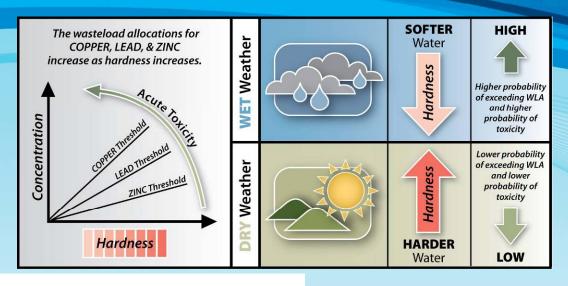
- The development of a site-specific objective is an acceptable step in determining appropriate targets for dissolved copper, lead, and zinc in Chollas Creek.
- Supported by the State Implementation Policy.
- If WER studies and scientific evidence indicate that site-specific objectives are appropriate in Chollas Creek, and that these site-specific objectives will protect the beneficial uses of this waterbody, the TMDL will be modified accordingly.

Chollas Creek Metals Summary



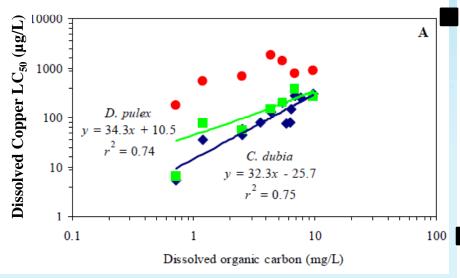
- Dissolved copper is the most frequently exceeded metal for the acute criteria.
- Dissolved lead has never exceeded acute criteria. Few chronic lead exceedances noted. Lead criteria is being revised by EPA.
- Dissolved zinc has fewer exceedances and primarily in the north fork.
- South fork has fewer metals exceedances in comparison to the north fork.

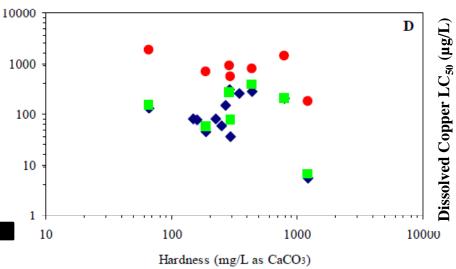
How the California Toxics Rule and the WER works



CTR With WER

Relationship of Hardness and Dissolved Organic Carbon to Copper Toxicity





C. dubia=blue diamonds

D. pulex=green squares

P. promelas=red circles

Source: Parametrix and Hydroqual, 2006

Rationale for WER Study

- 1. Historically, toxicity in Chollas related to pesticides not dissolved metals.
- 2. Dissolved organic carbon influences toxicity more than other water quality parameters.
- 3. USEPA recognizes that dissolved metals criteria may be more or less protective (USEPA, 1994)¹.
- 4. Previous WER studies (e.g., Calleguas Creek and South San Francisco Bay) indicate copper WER >1, most lead and zinc final WER > 1.

Final WER/SSO Calculations

WER=
$$\frac{EC_{50} \text{ Site Water}}{EC_{50} \text{ Control Water}}$$

- Separate WER for each site, flow event.
- Final WER (FWER) Options =
 - use the geometric mean of some or all of the WERs
 - or use most conservative WER
- Site-specific objective for Chollas Creek:

Draft Results

DPR2-South Fork	Copper WER	Zinc WER
Event 1-DPR2	27.00	1.47
Event 2-DPR2	45.03	3.31
Min (DPR2), Conservative	27.00	1.47

think BLUE

SD8(1)-North Fork	Copper WER	Zinc WER
Rangefnder WER-SD8(1)	10.81	2.07
Event 1-SD8(1)	22.14	0.56
Event 2-SD8(1)	37.37	2.57
Geomean (SD8(1))	20.76	1.44

Combined Events	Copper WER	Zinc WER
Event 1-DPR2	27.00	1.47
Event 2-DPR2	45.03	3.31
Rangefnder WER-SD8(1)	10.81	2.07
Event 1-SD8(1)	22.14	0.56
Event 2-SD8(1)	37.37	2.57
Geomean (Chollas Watershed)	25.54	1.71

Project Schedule

think BLUE
SAN DIEGO

- √ 1/13/10 submit draft workplan
- ✓ 2/3/10 meeting to discuss workplan
- ✓ 1/13/10-2/11/10 rangefinder Test
- √ 2/10/10 finalize workplan
- ✓ 2/11/10 3/31/10 Spring WER Testing low and high flow events at 2 sites
 - 6/25/10 draft progress report (Spring events)
 - 10/1/10-12/1/10 Fall WER Testing 2 events at 2 sites
 - 1/20/11 draft WER report
 - 1/26/11 presentation of WER study
 - Finalize WER report

